Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros










Intervalo de año de publicación
1.
Front Plant Sci ; 15: 1376214, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38742215

RESUMEN

Sustainable food security and safety are major concerns on a global scale, especially in developed nations. Adverse agroclimatic conditions affect the largest agricultural-producing areas, which reduces the production of crops. Achieving sustainable food safety is challenging because of several factors, such as soil flooding/waterlogging, ultraviolet (UV) rays, acidic/sodic soil, hazardous ions, low and high temperatures, and nutritional imbalances. Plant growth-promoting rhizobacteria (PGPR) are widely employed in in-vitro conditions because they are widely recognized as a more environmentally and sustainably friendly approach to increasing crop yield in contaminated and fertile soil. Conversely, the use of nanoparticles (NPs) as an amendment in the soil has recently been proposed as an economical way to enhance the texture of the soil and improving agricultural yields. Nowadays, various research experiments have combined or individually applied with the PGPR and NPs for balancing soil elements and crop yield in response to control and adverse situations, with the expectation that both additives might perform well together. According to several research findings, interactive applications significantly increase sustainable crop yields more than PGPR or NPs alone. The present review summarized the functional and mechanistic basis of the interactive role of PGPR and NPs. However, this article focused on the potential of the research direction to realize the possible interaction of PGPR and NPs at a large scale in the upcoming years.

2.
Sci Total Environ ; 912: 169097, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38056665

RESUMEN

Climate change imposes various environmental stresses which substantially impact plant growth and productivity. Salinity, drought, temperature extremes, heavy metals, and nutritional imbalances are among several abiotic stresses contributing to high yield losses of crops in various parts of the world, resulting in food insecurity. Many interesting strategies are being researched in the attempt to improve plants' environmental stress tolerance. These include the application of nanoparticles, which have been found to improve plant function under stress situations. Nanotechnology will be a key driver in the upcoming agri-tech and pharmaceutical revolution, which promises a more sustainable, efficient, and resilient agricultural and medical system Nano-fertilizers can help plants utilise nutrients more efficiently by releasing nutrients slowly and sustainably. Plant physiology and nanomaterial features (such as size, shape, and charge) are important aspects influencing the impact on plant growth. Here, we discussed the most promising new opportunities and methodologies for using nanotechnology to increase the efficiency of critical inputs for crop agriculture, as well as to better manage biotic and abiotic stress. Potential development and implementation challenges are highlighted, emphasising the importance of designing suggested nanotechnologies using a systems approach. Finally, the strengths, flaws, possibilities, and risks of nanotechnology are assessed and analysed in order to present a comprehensive and clear picture of the nanotechnology potentials, as well as future paths for nano-based agri-food applications towards sustainability. Future research directions have been established in order to support research towards the long-term development of nano-enabled agriculture and evolution of pharmaceutical industry.


Asunto(s)
Agricultura , Nanoestructuras , Agricultura/métodos , Nanotecnología/métodos , Productos Agrícolas , Estrés Fisiológico
3.
Plant Sci ; 340: 111964, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38159611

RESUMEN

Nanotechnology offers the potential to provide innovative solutions for sustainable crop production as plants are exposed to a combination of climate change factors (CO2, temperature, UV radiation, ozone), abiotic (heavy metals, salinity, drought), and biotic (virus, bacteria, fungi, nematode, and insects) stresses. The application of particular sizes, shapes, and concentration of nanomaterials (NMs) potentially mitigate the negative impacts in plants by modulation of photosynthetic rate, redox homeostasis, hormonal balance, and nutrient assimilation through upregulation of anti-stress metabolites, antioxidant defense pathways, and genes and genes network. The present review inculcates recent advances in uptake, translocation, and accumulation mechanisms of NMs in plants. The critical theme of this review provides detailed insights into different physiological, biochemical, molecular, and stress tolerance mechanism(s) of NMs action and their cross-talk with different phytohormones. The role of NMs as a double-edged sword for climate change factors, abiotic, and biotic stresses for nutrients uptake, hormones synthesis, cytotoxic, and genotoxic effects including chromosomal aberration, and micronuclei synthesis have been extensively studied. Importantly, this review aims to provide an in-depth understanding of the hormesis effect at low and toxicity at higher doses of NMs under different stressors to develop innovative approaches and design smart NMs for sustainable crop production.


Asunto(s)
Nanoestructuras , Reguladores del Crecimiento de las Plantas , Reguladores del Crecimiento de las Plantas/metabolismo , Plantas/metabolismo , Estrés Fisiológico , Temperatura
4.
Front Plant Sci ; 14: 1283852, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38053770

RESUMEN

Plastics' unavoidable and rampant usage causes their trash to be extensively dispersed in the atmosphere and land due to its numerous characteristics. Because of extensive plastic usage and increased manufacturing, there is insufficient recycling and a large accumulation of microplastics (MPs) in the environment. In addition to their wide availability in the soil and atmosphere, micro- and nanoplastics are becoming contaminants worldwide. Agro-ecosystem functioning and plant development are being negatively impacted in several ways by the contamination of the environment and farmland soils with MPs (<5 mm) and nanoplastics (<1 µm). The contributions of some recyclable organic waste and plastic film mulching and plastic particle deposition in agroecosystems may be substantial; therefore, it is crucial to understand any potentially hazardous or undesirable impacts of these pollutants on agroecosystems. The dissolution of bioplastics into micro- and nano-particles (MBPs and NBPs) has not been considered in recent studies, which focus primarily on agro-ecosystems. It is essential to properly understand the distribution, concentration, fate, and main source of MPs, NPS, MBPs, and NBPs in agroecosystems. Based on the limited findings, understanding the knowledge gap of environmental impact from micro and nanoplastic in farming systems does not equate to the absence of such evidence. It reveals the considerations for addressing the gaps to effectively protect global food safety and security in the near future.

5.
PeerJ ; 11: e16549, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38107578

RESUMEN

Background: Fusarium wilt, caused by Fusarium oxysporum f. sp. cubense race 4 (Foc4), is the most lethal disease of bananas in Asia. Methods: To better understand the defense response of banana to Fusarium wilt, the transcriptome and metabolome profiles of the roots from resistant and susceptible bananas inoculated with Foc4 were compared. Results: After Foc4 inoculation, there were 172 and 1,856 differentially expressed genes (DEGs) in the Foc4-susceptible variety (G1) and Foc4-resistant variety (G9), respectively. In addition, a total of 800 DEGs were identified between G1 and G9, which were mainly involved in the oxidation-reduction process, cell wall organization, phenylpropanoid biosynthesis, and lipid and nitrogen metabolism, especially the DEGs of Macma4_08_g22610, Macma4_11_g19760, and Macma4_03_g06480, encoding non-classical arabinogalactan protein; GDSL-like lipase; and peroxidase. In our study, G9 showed a stronger and earlier response to Foc4 than G1. As the results of metabolomics, lipids, phenylpropanoids and polyketides, organic acids, and derivatives played an important function in response to Fusarium wilt. More importantly, Macma4_11_g19760 might be one of the key genes that gave G9 more resistance to Foc4 by a lowered expression and negative regulation of lipid metabolism. This study illustrated the difference between the transcriptomic and metabolomic profiles of resistant and susceptible bananas. These results improved the current understanding of host-pathogen interactions and will contribute to the breeding of resistant banana plants.


Asunto(s)
Fusarium , Musa , Transcriptoma , Musa/genética , Fusarium/genética , Fitomejoramiento , Perfilación de la Expresión Génica , Susceptibilidad a Enfermedades
6.
Environ Monit Assess ; 195(12): 1436, 2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-37940796

RESUMEN

Soil microbes are microscopic organisms that inhabit the soil and play a significant role in various ecological processes. They are essential for nutrient cycling, carbon sequestration, and maintaining soil health. Importantly, soil microbes have the potential to sequester carbon dioxide (CO2) from the atmosphere through processes like carbon fixation and storage in organic matter. Unlocking the potential of microbial-driven carbon storage holds the key to revolutionizing climate-smart agricultural practices, paving the way for sustainable productivity and environmental conservation. A fascinating tale of nature's unsung heroes is revealed by delving into the realm of soil microbes. The guardians of the Earth are these tiny creatures that live beneath our feet and discreetly work their magic to fend off the effects of climate change. These microbes are also essential for plant growth enhancement through their roles in nutrient uptake, nitrogen fixation, and synthesis of growth-promoting chemicals. By understanding and managing soil microbial communities, it is possible to improve soil health, soil water-holding capacity, and promote plant growth in agricultural and natural ecosystems. Added to it, these microbes play an important role in biodegradation, bioremediation of heavy metals, and phytoremediation, which in turn helps in treating the contaminated soils. Unfortunately, climate change events affect the diversity, composition, and metabolism of these microbes. Unlocking the microbial potential demands an interdisciplinary endeavor spanning microbiology, ecology, agronomy, and climate science. It is a call to arms for the scientific community to recognize soil microbes as invaluable partners in the fight against climate change. By implementing data-driven land management strategies and pioneering interventions, we possess the means to harness their capabilities, paving the way for climate mitigation, sustainable agriculture, and promote ecosystem resilience in the imminent future.


Asunto(s)
Ecosistema , Suelo , Suelo/química , Cambio Climático , Microbiología del Suelo , Monitoreo del Ambiente
8.
Plant Physiol Biochem ; 204: 108089, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37852069

RESUMEN

Fluoride (F-) stress is one of the major environmental pollutant, affecting plant growth, development and production, globally. Acquisition of eco-friendly F- stress reliever seems to be the major concern these days. Consequently, application of engineered nanomaterials (ENMs) has been increasing to improve agri-economy. However, the impact of silicon nanoparticles (Si NPs) on mitigation of F- stress has not been investigated yet. Thus, the present study was conducted to compare their protective roles against F- stress by improving diurnal photosynthetic efficiency of sugarcane plant leaves. An ability of sugarcane (Saccharum officinarum cv. GT44) plants to ameliorate F- toxicity assessed through soil culture medium. After an adaptive growth phase, 45 days old plants select to examine F- mitigative efficacy of silicon nanoparticles (SiNPs: 0, 100, 300 and 500 ppm) on sugarcane plants, irrigated by F- contaminated water (0, 100, 200 and 500 ppm). Our results strongly favour that SiNPs enhanced diurnally leaf photosynthetic gas exchange viz., photosynthesis (∼1.0-29%), stomatal conductance (∼3.0-90%), and transpiration rate (∼0.5-43%), significantly, as revealed by increments in photochemical chlorophyll fluorescence efficiency of PS II linked with performance index and photosynthetic pigments during F- stress. To the best of our knowledge, this is the first investigation to explore the impact of SiNPs improving and/or maintaining the diurnal photosynthetic responses in sugarcane plants in response to F- stress. It may also precisely unlayer action of molecular mechanism(s) mediated by SiNPs, found essential for mitigation of F--toxicity to explore nano-phytoremediation approach for crop improvement and agri-economy as well.


Asunto(s)
Nanopartículas , Saccharum , Silicio/farmacología , Fluoruros/farmacología , Fotosíntesis , Hojas de la Planta/fisiología , Clorofila
9.
Front Microbiol ; 14: 1229955, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37808307

RESUMEN

Globally, due to widespread dispersion, intraspecific diversity, and crucial ecological components of halophilic ecosystems, halophilic bacteria is considered one of the key models for ecological, adaptative, and biotechnological applications research in saline environments. With this aim, the present study was to enlighten the plant growth-promoting features and investigate the systematic genome of a halophilic bacteria, Virgibacillus halodenitrificans ASH15, through single-molecule real-time (SMRT) sequencing technology. Results showed that strain ASH15 could survive in high salinity up to 25% (w/v) NaCl concentration and express plant growth-promoting traits such as nitrogen fixation, plant growth hormones, and hydrolytic enzymes, which sustain salt stress. The results of pot experiment revealed that strain ASH15 significantly enhanced sugarcane plant growth (root shoot length and weight) under salt stress conditions. Moreover, the sequencing analysis of the strain ASH15 genome exhibited that this strain contained a circular chromosome of 3,832,903 bp with an average G+C content of 37.54%: 3721 predicted protein-coding sequences (CDSs), 24 rRNA genes, and 62 tRNA genes. Genome analysis revealed that the genes related to the synthesis and transport of compatible solutes (glycine, betaine, ectoine, hydroxyectoine, and glutamate) confirm salt stress as well as heavy metal resistance. Furthermore, functional annotation showed that the strain ASH15 encodes genes for root colonization, biofilm formation, phytohormone IAA production, nitrogen fixation, phosphate metabolism, and siderophore production, which are beneficial for plant growth promotion. Strain ASH15 also has a gene resistance to antibiotics and pathogens. In addition, analysis also revealed that the genome strain ASH15 has insertion sequences and CRISPRs, which suggest its ability to acquire new genes through horizontal gene transfer and acquire immunity to the attack of viruses. This work provides knowledge of the mechanism through which V. halodenitrificans ASH15 tolerates salt stress. Deep genome analysis, identified MVA pathway involved in biosynthesis of isoprenoids, more precisely "Squalene." Squalene has various applications, such as an antioxidant, anti-cancer agent, anti-aging agent, hemopreventive agent, anti-bacterial agent, adjuvant for vaccines and drug carriers, and detoxifier. Our findings indicated that strain ASH15 has enormous potential in industries such as in agriculture, pharmaceuticals, cosmetics, and food.

11.
Front Microbiol ; 14: 1281182, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37731917

RESUMEN

[This corrects the article DOI: 10.3389/fmicb.2023.1224666.].

12.
Front Microbiol ; 14: 1224666, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37608953

RESUMEN

Introduction: Due to their bioactive compounds and beneficial health effects, functional foods and plant-based natural medicines are widely consumed. Due to its bioactivities, vinegar is one of them that helps humans. Sugarcane original vinegar (SOV) is a special vinegar made from sugarcane as a raw material through biological fermentation processes. Methods: The objective of this study was to assess the effects of sugarcane original vinegar on growth performance, immune response, acute oral toxicity, bacterial reverse mutation, mammalian erythrocyte micronucleus, mouse spermatogonial chromosome aberration, mammalian bone marrow cell chromosome aberration changes, and serum characteristics in mice. Distortion parameters were used to assess its safety, and at the same time, the functionality of SOV was monitored during experimentation. Results: The results show that the SOV has no damage or inhibitory effect on the bone marrow red blood cells of mice and no mutagenic or distortion-inducing effects on the bone marrow cell chromosomes or spermatogonia chromosomes, so it is safe to eat. SOV can improve blood lipids and reduce blood lipid content. Discussion: The study results provide data basis for the intensive processing of sugarcane and the development of high-value SOV products. Sugarcane original vinegar has a beneficial impact on performance, immune response, and chromosomal aberration. The production application influences the vinegar's quality and, consequently, its health benefits.

13.
Front Microbiol ; 14: 1132016, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37649627

RESUMEN

Sugarcane is an important sugar and energy crop worldwide, requiring a large amount of nitrogen (N). However, excessive application of synthetic N fertilizer causes environmental pollution in farmland. Endophytic nitrogen-fixing bacteria (ENFB) provide N nutrition for plants through biological N fixation, thus reducing the need for chemical fertilizers. The present study investigated the effect of the N-fixing endophytic strain Enterobacter roggenkampii ED5 on phytohormone indole-3-acetic acid (IAA), N-metabolism enzyme activities, microbial community compositions, and N cycle genes in sugarcane rhizosphere soil at different N levels. Three levels of 15N-urea, such as low N (0 kg/ha), medium N (150 kg/ha), and high N (300 kg/ha), were applied. The results showed that, after inoculating strain ED5, the IAA content in sugarcane leaves was significantly increased by 68.82% under low N condition at the seedling stage (60 days). The nitrate reductase (NR) activity showed a downward trend. However, the glutamine synthase (GS) and NADH-glutamate dehydrogenase (NADH-GDH) activities were significantly enhanced compared to the control under the high N condition, and the GS and NR genes had the highest expression at 180 and 120 days, respectively, at the low N level. The total N content in the roots, stems, and leaves of sugarcane was higher than the control. The 15N atom % excess of sugarcane decreased significantly under medium N condition, indicating that the medium N level was conducive to N fixation in strain ED5. Metagenome analysis of sugarcane rhizosphere soil exhibited that the abundance of N-metabolizing microbial richness was increased under low and high N conditions after inoculation of strain ED5 at the genus level, while it was increased at the phylum level only under the low N condition. The LefSe (LDA > 2, p < 0.05) found that the N-metabolism-related differential microorganisms under the high N condition were higher than those under medium and low N conditions. It was also shown that the abundance of nifDHK genes was significantly increased after inoculation of ED5 at the medium N level, and other N cycle genes had high abundance at the high N level after inoculation of strain ED5. The results of this study provided a scientific reference for N fertilization in actual sugarcane production.

14.
Front Microbiol ; 14: 1096754, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37152763

RESUMEN

Sugarcane is an important sugar and bioenergy source and a significant component of the economy in various countries in arid and semiarid. It requires more synthetic fertilizers and fungicides during growth and development. However, the excess use of synthetic fertilizers and fungicides causes environmental pollution and affects cane quality and productivity. Plant growth-promoting bacteria (PGPB) indirectly or directly promote plant growth in various ways. In this study, 22 PGPB strains were isolated from the roots of the sugarcane variety GT42. After screening of plant growth-promoting (PGP) traits, it was found that the DJ06 strain had the most potent PGP activity, which was identified as Pseudomonas aeruginosa by 16S rRNA gene sequencing. Scanning electron microscopy (SEM) and green fluorescent protein (GFP) labeling technology confirmed that the DJ06 strain successfully colonized sugarcane tissues. The complete genome sequencing of the DJ06 strain was performed using Nanopore and Illumina sequencing platforms. The results showed that the DJ06 strain genome size was 64,90,034 bp with a G+C content of 66.34%, including 5,912 protein-coding genes (CDSs) and 12 rRNA genes. A series of genes related to plant growth promotion was observed, such as nitrogen fixation, ammonia assimilation, siderophore, 1-aminocyclopropane-1-carboxylic acid (ACC), deaminase, indole-3-acetic acid (IAA) production, auxin biosynthesis, phosphate metabolism, hydrolase, biocontrol, and tolerance to abiotic stresses. In addition, the effect of the DJ06 strain was also evaluated by inoculation in two sugarcane varieties GT11 and B8. The length of the plant was increased significantly by 32.43 and 12.66% and fresh weight by 89.87 and 135.71% in sugarcane GT11 and B8 at 60 days after inoculation. The photosynthetic leaf gas exchange also increased significantly compared with the control plants. The content of indole-3-acetic acid (IAA) was enhanced and gibberellins (GA) and abscisic acid (ABA) were reduced in response to inoculation of the DJ06 strain as compared with control in two sugarcane varieties. The enzymatic activities of oxidative, nitrogen metabolism, and hydrolases were also changed dramatically in both sugarcane varieties with inoculation of the DJ06 strain. These findings provide better insights into the interactive action mechanisms of the P. aeruginosa DJ06 strain and sugarcane plant development.

15.
Int J Mol Sci ; 24(10)2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37240257

RESUMEN

Sugarcane, a C4 plant, provides most of the world's sugar, and a substantial amount of renewable bioenergy, due to its unique sugar-accumulating and feedstock properties. Brazil, India, China, and Thailand are the four largest sugarcane producers worldwide, and the crop has the potential to be grown in arid and semi-arid regions if its stress tolerance can be improved. Modern sugarcane cultivars which exhibit a greater extent of polyploidy and agronomically important traits, such as high sugar concentration, biomass production, and stress tolerance, are regulated by complex mechanisms. Molecular techniques have revolutionized our understanding of the interactions between genes, proteins, and metabolites, and have aided in the identification of the key regulators of diverse traits. This review discusses various molecular techniques for dissecting the mechanisms underlying the sugarcane response to biotic and abiotic stresses. The comprehensive characterization of sugarcane's response to various stresses will provide targets and resources for sugarcane crop improvement.


Asunto(s)
Saccharum , Transcriptoma , Saccharum/metabolismo , Proteómica , Perfilación de la Expresión Génica , Azúcares/metabolismo , Regulación de la Expresión Génica de las Plantas
16.
ACS Omega ; 8(13): 12538-12547, 2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37033789

RESUMEN

Wine is an alcoholic beverage, consisting of several compounds in various ranges of concentrations. Wine quality is usually assessed by a sensory panel of trained personnel. Electronic tongues (e-tongues) and electronic noses (e-noses) have been established in recent years to assess the quality of beverages and foods. Response surface and electronic analysis tools were used to examine the quality of black tea wine. The results indicated the optimum initial sugar level (25 °Brix), yeast addition (0.5%), and fermentation temperature (25 °C) for Golden Peony black tea wine. The black tea wine produced under these conditions with 14.0% vol alcohol has as an orange-red color, full wine and tea flavor, and mild and mellow taste. The sourness of the wine was most affected by fermentation factors-yeast addition, fermentation temperature, and initial sugar level. Alcohols, aldehydes, ketones, and alkanes contributed to most of the volatile components under the influence of yeast addition and fermentation temperature. In contrast, nitrogen oxides, aromatics, and organic sulfides contributed under the influence of the initial sugar level. This study provided a facilitated strategy for obtaining the optimum black tea wine fermentation process through electronic nose and tongue-based techniques. The analysis of wines requires new technologies able to detect various different compounds simultaneously, providing worldwide information about the sample instead of information about specific compounds.

17.
Front Nutr ; 10: 1145862, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37006937

RESUMEN

Vinegar is one of the most widely used acidic condiments. Recently, rapid advances have been made in the area of vinegar research. Different types of traditional vinegar are available around the globe and have many applications. Vinegar can be made either naturally, through alcoholic and then acetic acid fermentation, or artificially, in laboratories. Vinegar is the product of acetic acid fermentation of dilute alcoholic solutions, manufactured by a two-step process. The first step is the production of ethanol from a carbohydrate source such as glucose, which is carried out by yeasts. The second step is the oxidation of ethanol to acetic acid, which is carried out by acetic acid bacteria. Acetic acid bacteria are not only producers of certain foods and drinks, such as vinegar, but they can also spoil other products such as wine, beer, soft drinks, and fruits. Various renewable substrates are used for the efficient biological production of acetic acid, including agro and food, dairy, and kitchen wastes. Numerous reports on the health advantages associated with vinegar ingredients have been presented. Fresh sugarcane juice was fermented with wine yeast and LB acetate bacteria to develop a high-quality original sugarcane vinegar beverage. To facilitate the current study, the bibliometric analysis method was adopted to visualize the knowledge map of vinegar research based on literature data. The present review article will help scientists discern the dynamic era of vinegar research and highlight areas for future research.

18.
Biotechnol Genet Eng Rev ; : 1-21, 2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36814143

RESUMEN

Diazotrophic microorganisms are free-living groups of organisms that can convert atmospheric nitrogen (N) into bioavailable nitrogen for plants, which increases crop development and production. The purpose of the current study was to ascertain how diazotrophic plant growth promoting (PGP) Pseudomonas strains (P. koreensis CY4 and P. entomophila CN11) enhanced nitrogen fixation, defense activity, and PGP attributes of sugarcane varieties; GT11 and G×B9. A 15N isotope-dilution study was conducted to confirm the sugarcane strains' capacity to fix nitrogen, and the results indicated that between 21 to 35% of plant, nitrogen is fixed biologically by selected rhizobacteria. In comparison to the control, after 30, 60, and 90 days, both CY4 and CN11 strains significantly increased defense-related enzymes (catalase, peroxidase, phenylalanine ammonia-lyase, superoxide dismutase, glucanase, and chitinase) and phytohormones (abscisic acid, ABA, cytokinin, etc.) in GT11 and GXB. Additionally, the expression of SuCHI, SuGLU, SuCAT, SuSOD, and SuPAL genes was found to be elevated in Pseudomonas strains inoculated plants using real-time quantitative polymerase chain reaction (RT-qPCR). Both bacterial strains increased all physiological parameters and chlorophyll content in sugarcane plants more than their control. The effects of P. koreensis CY4 and P. entomophila CN11 strains on sugarcane growth promotion and nitrogen fixation under greenhouse conditions are described here for the first time systematically. The results of confirmation studies demonstrated that P. koreensis CY4 and P. entomophila are PGP bacterial strains with the potential to be employed as a biofertilizer for sugarcane growth, nitrogen nutrient absorption, and reduced application of chemical nitrogenous fertilizers in agricultural fields. .

19.
Front Plant Sci ; 13: 1014816, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36531341

RESUMEN

Insufficient availability of water is a major global challenge that plants face and that can cause substantial losses in plant productivity and quality, followed by complete crop failure. Thus, it becomes imperative to improve crop cultivation/production in unsuitable agricultural fields and integrate modern agri-techniques and nanoparticles (NPs)-based approaches to extend appropriate aid to plants to handle adverse environmental variables. Nowadays, NPs are commonly used with biological systems because of their specific physicochemical characteristics, viz., size/dimension, density, and surface properties. The foliar/soil application of nanosilicon (nSi) has been shown to have a positive impact on plants through the regulation of physiological and biochemical responses and the synthesis of specific metabolites. Reactive oxygen species (ROS) are produced in plants in response to drought/water scarcity, which may enhance the ability for adaptation in plants/crops to withstand adverse surroundings. The functions of ROS influenced by nSi and water stress have been assessed widely. However, detailed information about their association with plants and stress is yet to be explored. Our review presents an update on recent developments regarding nSi and water stress in combination with ROS accumulation for sustainable agriculture and an eco-friendly environment.

20.
Front Plant Sci ; 13: 992755, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36352884

RESUMEN

Drought is the abiotic factor that adversely affects plant growth, development survival, and crop productivity, posing a substantial threat to sustainable agriculture worldwide, especially in warm and dry areas. However, the extent of damage depends upon the crop growth stage, severity and frequency of the stress. In general, the reproductive growth phase is more sensitive to stresses causing a substantial loss in crop productivity. Saccharum spontaneum (L.) is the most variable wild relative of sugarcane with potential for use in sugarcane crop improvement programs. In the present study addresses the transcriptomic analysis of drought stress imposed by polyethylene glycol-6000 (PED-6000; w/v- 25%) on the root tip tissues of S. spontaneum GX83-10. The analysis of microarrays of drought-stressed roots was performed at 0 (CK), 2 (T2), 4 (T4), 8 (T8) and 24 h (T24). The analyzed data were compared with the gene function annotations of four major databases, such as Nr, KOG/COG, Swiss-Prot, and KEGG, and a total of 62,988 single-gene information was obtained. The differently expressed genes of 56237 (T4), 59319 (T8), and 58583 (T24), among which CK obtained the most significant number of expressed genes (35920) as compared to T24, with a total of 53683 trend genes. Gene ontology (GO) and KEGG analysis were performed on the 6 important trends, and a total of 598 significant GO IDs and 42 significantly enriched metabolic pathways. Furthermore, these findings also aid in the selection of novel genes and promoters that can be used to potentially produce crop plants with enhanced stress resistance efficiency for sustainable agriculture.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...